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Abstract—The lack of tooling to easily reuse cores and use
them with new tools leads to unnecessary time being spent
on manually adding tool support for each core, defining their
relations and in worst case rewriting code because of the lack
of a way to integrate existing code. FuseSoC rectifies this by
bringing a modern package manager and a uniform build system
to HDL developers. Having been around for seven years there
are now hundreds of FuseSoC-compatible cores and 14 different
simulation, synthesis and lint tools supported.

This paper gives an overview of where FuseSoC can help with
spending less time on the cores, and more time on the core
business.

FuseSoC is an open source software project and available at
https://github.com/olofk/fusesoc
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I. INTRODUCTION

FPGA/ASIC developers working on HDL code have a lot
in common with software programmers. But at the same time,
much of the infrastructure that software developers rely on has
been missing in the HDL world. Two closely related such areas
is package management and build systems [1]. The software
developers have since long depended on package managers
such as apt and yum for system packages, or language-specific
package managers such as npm, cargo, pip or maven. The
idea of a build system to provide an abstract interface for
the target system is likely even older, with autotools, cmake,
waf, scons and more recently meson as examples of such
systems. Yet, for the HDL designers there has been no such
commonly used tools. Many companies are using their own
systems internally and the FPGA vendor each provide their
own proprietary package formats. And instead of a common
way to share code between projects, it is often the case that
code is just copied around and modified locally, which makes
it harder for improvements to reach all users and makes bugs
live longer.

II. HISTORY

When working on ORPSoC v2 [2](the second version of
the OpenRISC Reference Platform System on Chip) in 2010
this problem became very apparent as the number of supported
configurations and included IP cores grew. Due to the mono-
lithic nature of the project, every time a new addition or change
was made, the whole code base was copied and eventually
there was a large number of slightly different copies that had
diverged from each other. Even more notable was that many
of the IP cores that were initially copied into ORPSoCv2 were

improved, but these changes were never made available to the
original copy. When a new version ORPSoCv3 was planned,
a number of goals were stated to improve the situation. Most
notable of these were [3]:

• Focus on modularity
• Avoid changes to upstream cores
• Clear separation of source and generated files
• Easy to extend
• Easy to use
• Reuse existing technology
The work on ORPSoCv3 was started in 2011 as a Makefile-

based project. After about a year of development, this turned
out to be a dead end, and the project was restarted using
Python instead. After another year or two of development, it
became clear that none of the code in ORPSoCv3 was actually
tied to OpenRISC, and that it was instead a general purpose
package manager and build system for HDL. To make this
more obvious the project changed name in 2014 to FuseSoC.
The name itself comes from the metaphor of nuclear fusion
where smaller cores are fused together to a large single core,
as the IP cores were to be combined into a larger project.
Development has continued continuously since then and as
of December 2018 FuseSoC now supports 14 different EDA
tools, has seen contributions from more than 30 developers and
there are hundreds of IP cores packaged for use with FuseSoC.
As the number of users grow, FuseSoC is aiming to become
the main alternative for HDL package management.

III. OVERVIEW

FuseSoC itself is a command-line application and library
written in Python that is used to perform various actions on
cores. The cores expose different targets for running a test
bench or implementing an FPGA image for a certain hardware
device.

The command below will build an FPGA image for the serv
core for a TinyFPGA BX board

$ fusesoc run --target=tinyfpga_bx serv

Some targets, often simulation, can be performed with
different tools as can be seen in the following example of
running the test bench of the wb bfm core using ModelSim

$ fusesoc run --tool=modelsim wb_bfm

As can be seen from the above examples, both target and
tool can have implicit default values.
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Fig. 1. FuseSoC is asked to run a simulation of a core A. The whole process consists of finding out which dependencies are needed and download them if
required. The complete set of dependencies are then combined into a single design described by a tool-agnostic EDAM (EDA Metadata) object. The metadata
is then converted into the project files needed to run the design through the requested tool and finally run the tool.

There are also actions for finding more information about
the cores (fusesoc core info), working with generators (fusesoc
gen list), adding libraries (fusesoc library add) and other
aspects of the package management.

FuseSoC consists of several parts which provide different
services, as illustrated in Figure 1. These can roughly be
divided into:

• Core description files
• Dependency management
• Source / build separation
• EDA tool abstraction

To illustrate how these parts fit together, consider an exam-
ple of a core A which has a target called sim for running a
simulation and that the user wants to specifically use verilator
[4] in this case. This would translate to the command fusesoc
run –target=sim –tool=verilator A. When the above command
is executed the following will happen internally in FuseSoC

1) FuseSoC’s configuration files are read to find the loca-
tion of the core libraries.

2) The core manager loads all core files from the core
libraries

3) The core manager is queried to find all the dependencies
of the requested core (A) given the specified target (sim)

4) With all dependencies resolved, there is now an ordered
list of all required dependencies

5) Each of the core description files in the dependency list
is parsed to see which files, parameters, VPI (Verilog
Procedural Interface) libraries etc, are required for the
requested operation. This information is combined to an
EDAM [5] (EDA Metadata) data structure. All required
files are also copied into a clean build tree.

6) Edalize [6], the EDA abstraction library, is handed
the EDAM structure and proceeds to create the tool-
specific files. As verilator was explicitly requested on
the command-line (using the –tool argument), Edalize

will proceed to create the project file and launch scripts
required to build and run a simulation with verilator

7) After creating the project files, Edalize will continue to
the build phase where the simulation model is built.

8) Finally, Edalize will launch the simulation model with
any extra run-time parameters in the run phase.

IV. CORE DESCRIPTION FILES

Listing 1. Core description file example. This core description file describes
a core with the VLNV identifier ::i2c:1.14. i.e. name is i2c version is 1.14
and the optional fields vendor and library are left out. The core has two
filesets rtl files and tb. Both contain only verilog files and the latter depends
on minimum version 1.0 of the core vlog tb utils. The core has two targets.
default is always used when a core is being used as a dependency of another
core while the sim target can be used to run simulations on the core. Finally
the provider section tells FuseSoC where to find the source code for the core
and that it needs to apply a patch after it has been downloaded
CAPI=2:
name : ::i2c:1.14

filesets:
rtl_files:
files:
- rtl/i2c_byte_ctrl.v
- rtl/i2c_def.v:

is_include_file : true
- rtl/i2c_top.v

file_type : verilogSource
tb:
depend:
- ">=vlog_tb_utils-1.0"

files:
- tb/tst_bench_top.v:

file_type : verilogSource

targets:
default:
filesets : [rtl_files]



sim:
default_tool : icarus
filesets : [rtl_files, tb]
toplevel : tst_bench_top

provider:
name : github
user : olofk
repo : i2c
version : v1.14
patches : [files/0001-add_vt_utils.patch]

The properties of a core are described by core description
files. This description should be tool- and vendor-agnostic to
ease the process of switching tools and targets. It should at the
same time contain enough information so that the EDA tools
can understand how to work with the core. On top of this, it
should provide the user with information about the core and
what can be done with it.

Listing 1 shows a basic example of a core description file.
FuseSoC core description files implement a version of CAPI
(Core API). To distinguish which CAPI that is implemented,
files must begin with CAPI=n. This allows changing the file
format completely between CAPI versions, something that was
already done between CAPI 1 and CAPI 2.

The rest of the file contains information about the core,
such as which files it consists of, any parameters that can be
set externally, EDA tool-specific settings or dependencies on
other cores.

One defining feature of FuseSoC core description files is the
optional separation between source and metadata. There are
two types of cores and the type is determined by the presence
of a section called provider, as can be seen in listing 1. A
core with a provider section is called a remote core while
a core without a provider section is called a local core. For
a remote core, the provider informs FuseSoC where to find
the actual source code. The first time the core is needed,
FuseSoC will download the core source code and store it
in a local cache and use that location for subsequent uses.
For the local cores FuseSoC will instead look for the source
code in the directory where the core file itself resides. The
two types exist to support different workflows. A local core
is commonly used when interacting directly with the core,
such as during development. This allows the core description
file to be developed and rapidly changed in tandem with the
source. A remote core on the other hand is useful for building
a library of third-party cores without having to make actual
copies of all the cores. Being able to store the core description
file separate from the source code is also especially important
for cases where it’s not allowed to host a copy of the source
code. In these situations it might also be required to make
changes to the third-party source code, for which FuseSoC
allows applying patches to remote cores stored in the cache.
Figure 2 show the transitions of the source code for remote
cores.

The idea of using a file to encapsulate properties of a core
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Fig. 2. FuseSoC cache flow for remote cores

is not unique to FuseSoC. Most notable is IP-XACT [7] but
there are also vendor-specific formats such as Xilinx XCI
(which effectively are Xilinx-branded IP-XACT 2009 files)
or Intel’s Qsys [8]. There are also a large number of package
formats for software, such as deb [9], RPM [10] or ebuild [11]
packages. Reusing an existing package format has the benefits
of being able to reuse existing knowledge and tooling. There
are however issues with all the aforementioned formats that
makes them less ideal for the purpose of FuseSoC.

Starting with the vendor-specific formats, they are tied to a
single vendor which defeats the idea of a description format
that all tools can consume.

The software package formats tend to focus on distributing
and installing binary payloads that are compiled by the pack-
age provider and distributed in binary form to be installed by
the users. This isn’t suitable for HDL where the analogous
binary format would be a netlist synthesized for a particular
device family or a part of a simulation model for a particular
tool. While a software package needs to be available for one
or mostly a handful of architectures (e.g. x86 and arm), the
HDL package would need to be built for multiple version of
multiple tools and multiple hardware targets which makes a
portable binary distribution infeasible.

There is a class of source-based package formats that work
by distributing source code and builds the binaries on the users



machines. Gentoo’s ebuild or Rust’s cargo [12] are examples
of this. The source-based package formats remove the distri-
bution problems, but there are other issues that still make them
unsuitable for HDL package management due to differences
in the software and HDL ecosystems. Existing source-based
software package formats usually contain instructions for the
steps involved to transform the source code to an executable
or library on the user’s system. These steps generally involve
configuration, compilation, test and installation. It is also
assumed that a particular tool chain, or occasionally two (e.g.
GCC or LLVM) is used. HDL on the other hand is consumed
by a variety of tools with different purposes and the steps
can instead be elaboration, synthesis, compilation, solving or
STA. With the variety of tools also come many tool-specific
file types that are only applicable for that tool (e.g. vendor IP
core descriptions, memory initialization files). All this adds up
to make existing software package formats a bad fit for HDL.

The existing format that comes closest to fulfil the requested
traits is IP-XACT. This was created as a Standard Structure
for Packaging, Integrating, and Reusing IP within Tool Flows
[7]. The standard is too large to cover in detail, but it contains
structures for describing the files, external connections, register
maps, parameters and many other things that makes up an IP.

There are several areas of IP-XACT that overlaps with
FuseSoC core description files and the latter are influenced by
the former where applicable. The two most notable examples
would be that a core in FuseSoC is uniquely identified by
a VLNV (Vendor Library Name Version) identifier as in
IP-XACT. The notion of file sets and their attributes (e.g.
is include file, logical name, file type) is directly copied from
IP-XACT and the enumerated list of supported file formats is
a super-set of the valid IP-XACT file types.

This would imply that IP-XACT could be used as is instead
of creating something new. There are several reasons why
it was deemed necessary to create a new core description
format. As of the current version of the standard at the time
of writing, IP-XACT is missing features which FuseSoC relies
on to perform its tasks.

While IP-XACT has a notion of dependencies between cores
it lacks support for version ranges, a feature which exists
in effectively all package managers, and without which it is
difficult to build dependency chains.

IP-XACT also enumerates valid file types and EDA tools.
Both are missing values that are required to provide sufficient
guidance for the tools. As an example, IP-XACT defines
the file types vhdlSource, vhdlSource-87 and vhdlSource-93
but is missing an entry for e.g vhdlSource-2008 which is
vital information for some tools that treat these types of files
differently.

To mitigate the issues of missing features, IP-XACT has
from the beginning implemented a system for vendorExten-
sions, a facility to add non-standard features to an IP-XACT
description file. Vendor extensions would likely be able to
solve the above issues, but one issue remain that is not fixable
this way.

IP-XACT files are not suitable for direct manipulation by
humans, meaning that additional tooling is required. FuseSoC
core description files are intended to be easy enough to manip-
ulate by hand while providing enough information about the
core to guide the EDA tools. This doesn’t mean that FuseSoC
core description files replaces IP-XACT. There are several
areas where IP-XACT provide information that FuseSoC has
no interest in, but are still vital for other uses of the IP core
(e.g. register maps and interfaces). Fig. 3 show a Venn diagram
of FuseSoC core description files and IP-XACT files.
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Fig. 3. Feature comparison of FuseSoC core description files and IP-XACT
files

For the areas that overlap between FuseSoC and IP-XACT,
FuseSoC is in certain situations capable of extracting this
information from the IP-XACT file instead of having to
duplicate it in the core description file.

V. DEPENDENCY MANAGEMENT

To facilitate reuse of cores or subsystems in a SoC, there
must be a way to specify what to reuse. This is the task of
the dependency manager. A core can be depend on zero or
more other cores. The set of dependencies can be different if
the core is used as a part of a larger system or if it is itself
the top-level core; whether it is being used in a simulation or
synthesis context. Dependencies doesn’t have to be an exact
version, but can be specified as a range or any version. The
use of version ranges is important to minimize conflicting
dependencies (e.g. the Diamond dependency problem [13])
and is used in essentially all software package managers, but
is notably missing in other HDL-specific equivalents such as
hdlmake [14], IP-XACT or IPApproX [15]

The complete tree of dependencies is fed into a SAT solver
[16] that processes the requirements and provide an ordered
list of cores which satisfies all constraints.

VI. SOURCE / BUILD SEPARATION

A complete design can consist of a large number of cores.
This makes it harder to know exactly what files and settings
were used for a particular build and how to reproduce it.

FuseSoC solves this problem by separating the build process
into several steps. First all files to be used for the build are
transferred to a new build tree so that the files used for a
build are protected even if the underlying source changes. In
the next step when the EDA project files are created only files
in the build tree are referenced. This is called the configure
stage. FuseSoC can be instructed to stop after this step so that
the build tree can be archived for traceability or transferred to
another machine that handles the build. As no tools are called



during the configure stage, this can all be done on a machine
without any EDA tools installed, making it easier for a team
of developers to work on their local machines and submit job
requests to remote build machines.

VII. EDA TOOL ABSTRACTION

FuseSoC supports more than a dozen different EDA tools.
Yet each of these tools use their own unique format for
listing input files (e.g. HDL source, constraint files, memory
initialization data) and applying settings. A single design is
often used by several tools. There could be one tool for
synthesis/P&R, one for formal verification and several types
of simulators. These tools will typically consume slightly
different subsets of the source. As for simulating the same test
bench with different simulators, they often use the exact same
subset of the design source. At the same time, each new tool
to be used requires creating a whole new project file listing
mostly the same HDL source, top-level module, compile-time
configuration (e.g. verilog d̀efine, verilog parameters, VHDL
generics) and run-time configuration (e.g. plusargs).

FuseSoC solves this by defining a metadata format called
EDAM that describes most parts of the design in a tool-
agnostic way while leaving room for applying tool-specific
directives. The EDAM description is then passed through a
tool-specific back-end to be transformed into the project files
required for each EDA tool.

Once the project files are created, FuseSoC can be asked to
run the tool. Running a tool has different meanings depending
on the type of tool. For simulation this generally consists of
compiling and running a simulation model. When creating
an FPGA image the steps can be synthesis, placing, routing,
STA, image generation. A linting tool typically only has a
linting step. While other tools such as HAMMER [17] and
hdlmake [14] provide fine-grained abstractions to run each of
these steps, FuseSoC has chosen the path of only providing
two steps - build and optionally run. The build step will
do transformation of source code to a binary representation,
while the run step will execute what was created in the build
phase. For a simulator/formal verification tool this means that
the build step will create the simulation model while the
simulation/solver runs in the run step. An FPGA tool chain
will create the FPGA image in the build step and leaves
the run step undefined. The rationale for having a coarse-
grained approach is that most EDA tools are complex and
support many different workflows and as more EDA tools are
supported, more different steps would need to be defined as
they might not fit into the existing ones. It is instead assumed
that the user will use the FuseSoC-created project files and
launch the EDA tools themselves for any workflow not directly
supported by FuseSoC.

VIII. CONCLUSION

This paper show several areas where FuseSoC play an
important role in filling a gap in the current EDA ecosystem.

Being able to reuse existing components in a new design
is important to reduce to cost and effort of the new design.

FuseSoC can help here by allowing users to build up core li-
braries where open source and proprietary, in-house developed
and third party cores can be combined.

Being able to use cores in a new environment is important
to allow them to be used by users with access to different tools
than the original authors. FuseSoC can help here by providing
abstractions for EDA tools to make it easier to change.

Having been around for seven years and used in many
designs, FuseSoC has stood the test of time. FuseSoC continu-
ously expands its support for new EDA tools and other features
as well as finding an ever increasing supply of FuseSoC-
compatible cores. As FuseSoC is open source software (https://
github.com/olofk/fusesoc) anyone is free to use and contribute
to the project. The FuseSoC source code is available under the
GPLv3 license. This means that any changes to the FuseSoC
code base must remain under the same license. The Edalize
library is available under the BSD license which allows it to
be embedded into other open source or proprietary products
without necessarily remain open source. Core description files
are considered as configuration files and not covered by any
license. The core description files found in the FuseSoC base
libraries [18] [19] are freely available to use and modify.
Finally, any files created by FuseSoC or Edalize (e.g. EDA
tool project files, Makefiles, run scripts) are also not similarily
not enforced any license, and the user who invoked FuseSoC
to create the aformentioned files is free to choose their own
license for them.

IX. FUTURE WORK

• Use flags: FuseSoC already support setting compile- and
run-time parameters to parametrize the HDL source, but
there is also a need for a mechanism to conditionally en-
able and disable features in the core description files. This
can be compared to Gentoo’s USE flags [20] or Rust’s
conditional compilation [21]. This is already partially
implemented in FuseSoC and can be used to conditionally
add or remove filesets depending on which tool that is
used, but lacks a way for users to define and set custom
flags.

• Better IP-XACT integration: Given the number of features
that overlap between FuseSoC core description files and
IP-XACT it should be possible to use more features di-
rectly from the IP-XACT descriptions. Also to investigate
is the possibility of adding features from FuseSoC core
description files to future IP-XACT revisions.

• Lock files: When the dependencies are resolved for a
core, it will by default use the latest available version
that satisfies all solver constraints. If there are updates
to a sub-dependency, this new version will likely be used
during the next build. In some cases it is instead beneficial
to build a design with the exact same dependencies even
if there are newer versions available. Lock files is a way
to handle this. It is a file that states the exact version to
use for each dependency, which will override the regular
dependency calculation.



• Increased tool support: FuseSoC currently support 15
different tools, but there are several simulators not sup-
ported, e.g. NCSim, NVC, ActiveHDL, and FPGA tool
chains missing, e.g. Diamond, Libero. There are also
other types of tools missing such as SymbiYosys [22] for
formal verification.
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